
Lecture 2:	  
PARTICLE ACCELERATION 
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- PARTICLE ACCELERATION IN RANDOM SCATTERING WITH MOVING WAVES 
- FIRST ORDER DIFFUSIVE SHOCK ACCELERATION / TEST PARTICLE THEORY 
- FIRST ORDER DIFFUSIVE SHOCK ACCELERATION / NON-LINEAR THEORY 
- APPLICATION TO MULTI-NU OBSERVATIONS OF SUPERNOVA REMNANTS 
- ADVANCED ASPECTS (VELOCITY OF SCATTERING CENTERS, NEUTRALS) 



ACCELERATION OF NONTHERMAL PARTICLES 

The presence of  non-thermal particles is ubiquitous in the Universe 
(solar wind, Active galaxies, supernova remnants, gamma ray bursts, 
Pulsars, micro-quasars) 
 
WHEREVER THERE ARE MAGNETIZED PLASMAS THERE ARE NON- 
THERMAL PARTICLES 
 
 
 

           PARTICLE ACCELERATION 

BUT THERMAL PARTICLES ARE USUALLY DOMINANT, SO WHAT DETERMINES 
THE DISCRIMINATION BETWEEN THERMAL AND ACCELERATED PARTICLES? 
 

                         INJECTION 



ALL	  ACCELERATION	  MECHANISMS	  ARE	  
ELECTROMAGNETIC	  IN	  NATURE	  

MAGNETIC	  FIELD	  CANNOT	  MAKE	  WORK	  ON	  
CHARGED	  PARTICLES	  THEREFORE	  ELECTRIC	  FIELDS	  

ARE	  NEEDED	  FOR	  ACCELERATION	  TO	  OCCUR	  

REGULAR	  ACCELERATION	  
THE	  ELECTRIC	  FIELD	  IS	  LARGE	  

SCALE:	  	  
	  
	  
	  

STOCHASTIC	  
ACCELERATION	  

THE	  ELECTRIC	  FIELD	  IS	  SMALL	  
SCALE:	  	  

	  
	  
	  

� �E� �= 0 � �E� = 0 � �E2� �= 0



REGULAR ACCELERATION 

� �E� �= 0 Very special conditions are necessary in Astrophysical  
environments in order to achieve this condition, because of 
the high electrical conductivity of astrophysical plasmas. 
Few exceptions: 

UNIPOLAR INDUCTOR: this occurs in the case of  rotating magnetic fields, 
such as in pulsars, rotating black holes. An electric potential is established 
between the surface of  the rotating object (neutrons star, BH) and infinity.  
The potential difference is usable only in places (gaps) where the condition 
                    is violated. MHD is broken in the gaps. 
 
 
RECONNECTION: Locally, regions with opposite orientation of  magnetic 
field merge, giving rise to a net local electric field E~LB, where L is the size  
of  the reconnection region. It occurs in the sun and solar wind, but probably 
also in the magnetosphere of  rotating neutron stars and BHs.   

�E · �B = 0



STOCHASTIC ACCELERATION	  

� �E� = 0 � �E2� �= 0
Most acceleration mechanisms that are operational in astrophysical environments 
are of this type. We have seen that the action of random magnetic fluctuations is that 
of scattering particles when the resonance is achieved. In other words, the particle 
distribution is isotropized in the reference frame of the wave. 
 
Although in the reference frame of the waves the momentum is conserved (B does  
not make work) in the lab frame the particle momentum changes by   
 
 
 
In a time T which is the diffusion time as found in the last lecture. It follows that 
 
 
 
 
THE MOMENTUM CHANGE IS A SECOND ORDER PHENOMENON !!!  
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2nd Order Fermi Acceleration 

E 

E’’ 

E� = γE + βγpµ

We inject a particle with energy E. In the  
reference frame of  a cloud moving with  
speed b the particle energy is: 
 
 
 
and the momentum along x is: 

p�
x = βγE + γpµ

Assuming that the cloud is very massive compared with the particle, we can assume 
that the cloud is unaffected by the scattering, therefore the particle energy in the  
cloud frame does not change and the momentum along x is simply inverted, so that 
after ‘scattering’ p’x - p’x. The final energy in the Lab frame is therefore: 

E” = γE� + βγp�
x =

γ2E
�
1 + β2 + 2βµ

p

E

�



p

E
=

mvγ

mγ
= v Where v is now the dimensionless 

Particle velocity 

It follows that: 
 
 
and: 
 
 
 
and finally, taking the limit of  non-relativistic clouds g1:  

E” = γ2E
�
1 + β2 + 2βµv
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E”− E

E
≈ 2β2 + 2βvµ

We can see that the fractional energy change can be both positive or  
negative, which means that particles can either gain or lose energy,  
depending on whether the particle-cloud scattering is head-on or tail-on.  



We need to calculate the probability that a scattering occurs head-on or 
Tail-on. The scattering probability along direction m is proportional to the  
Relative velocity in that direction: 
 
 
 
 
The condition of  normalization to unity: 
 
 
 
 
leads to A=1/2. It follows that the mean fractional energy change is: 

P (µ) = Avrel = A
βµ + v

1 + vβµ
→v→1≈ A(1 + βµ)
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NOTE THAT IF WE DID NOT ASSUME RIGID REFLECTION AT EACH CLOUD 
BUT RATHER ISOTROPIZATION OF THE PITCH ANGLE IN EACH CLOUD, 
THEN WE WOULD HAVE OBTAINED (4/3) b2 INSTEAD OF (8/3) b2 



THE FRACTIONAL CHANGE IS A SECOND ORDER QUANTITY IN  
b<<1. This is the reason for the name SECOND ORDER FERMI  
ACCELERATION 
 
The acceleration process can in fact be shown to become more 
Important in the relativistic regime where bà1 
 
THE PHYSICAL ESSENCE CONTAINED IN THIS SECOND ORDER 
DEPENDENCE IS THAT IN EACH PARTICLE-CLOUD SCATTERING 
THE ENERGY OF THE PARTICLE CAN EITHER INCREASE OR  
DECREASE à WE ARE LOOKING AT A PROCESS OF DIFFUSION  
IN MOMENTUM SPACE 
 
THE REASON WHY ON AVERAGE THE MEAN ENERGY INCREASES 
IS THAT HEAD-ON COLLISIONS ARE MORE PROBABLE THAN  
TAIL-ON COLLISIONS 
 



WHAT IS DOING THE WORK? 

We just found that particles propagating in a magnetic field can change their  
momentum (in modulus and direction)… BUT WHAT IS THE SOURCE OF THE 

ELECTRIC FIELDS???  Moving Magnetic Fields 
 
The induced electric field is responsible for this first instance 
of particle acceleration 
 
The scattering leads to momentum transfer, but to WHAT? 
 
Recall that particles isotropize in the reference frame of the 
waves… 



Shock Solutions 
UPSTREAM 	  	  	  	  	  	  	  	  	  	  	  	  	  	  DOWNSTREAM	  

U1            U2 

-∞              0                      +∞ 

Let us sit in the reference frame in which 
the shock is at rest and look for stationary  
solutions 
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It is easy to show that aside from the trivial solution in which all quantities  
remain spatially constant, there is a discontinuous solution: 

M1	  is	  the	  upstream	  
Fluid	  Mach	  number	  
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Strong Shocks M1
2>>1 

In the limit of  strong shock fronts these expressions get substantially simpler  
and one has: 
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ONE CAN SEE THAT SHOCKS BEHAVE AS VERY EFFICENT HEATING  
MACHINES IN THAT A LARGE FRACTION OF THE INCOMING RAM PRESSURE  
IS CONVERTED TO INTERNAL ENERGY OF THE GAS BEHIND THE SHOCK 
FRONT… 



Collisionless shocks 
While shocks in the terrestrial environment are mediated by particle-particle 
collisions, astrophysical shocks are almost always of  a different nature. The 
pathlength for ionized plasmas is of  the order of:   
 
 
 
Absurdly large compared with any reasonable length scale. It follows that  
astrophysical shocks can hardly form because of  particle-particle scattering 
But REQUIRE the mediation of  magnetic fields. In the downstream gas the  
Larmor radius of  particles is: 
 
 
 
The slowing down of  the incoming flow and its isotropization (thermalization) 
Is due to the action of  magnetic fields in the shock region (COLLISIONLESS 
SHOCKS) 

λ � 1
nσ

= 3.2Mpc n−1
1
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DIFFUSIVE SHOCK 
ACCELERATION OF CHARGED 

PARTICLES 
or 

FIRST ORDER FERMI 
ACCELERATION 



Bouncing between approaching 
magnetic mirrors 

UPSTREAM 	  	  	  	  	  	  	  	  	  	  DOWNSTREAM	  

U1            U2 

-∞              0                      +∞ 

Let us take a relativistic particle with 
energy E~p upstream of  the shock. In 
the downstream frame: 
 
 
 
where b = u1-u2>0. In the downstream 
frame the direction of  motion of  the  
particle is isotropized and reapproaches 
the shock with the same energy but 
pitch angle m’ 

Ed = γE(1 + βµ) 0 ≤ µ ≤ 1

Eu = γEd − βEdγµ� = γ2E(1 + βµ)(1− βµ�)
−1 ≤ µ� ≤ 0
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In the non-relativistic case the particle distribution is, at zeroth order, isotropic 
Therefore: 
 
 
 
 
 
 
The mean value of  the energy change is therefore: 
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A FEW IMPORTANT POINTS: 
I.   There	  are	  no	  configuraAons	  that	  lead	  to	  losses	  

II.   	  The	  mean	  energy	  gain	  is	  now	  first	  order	  in	  b	  

III.   	  The	  energy	  gain	  is	  basically	  independent	  of	  any	  detail	  	  
	  	  	  	  	  	  	  on	  how	  parAcles	  scaMer	  back	  and	  forth!	  



RETURN PROBABILITIES AND SPECTRUM 
OF ACCELERATED PARTICLES 
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HIGH	  PROBABILITY	  OF	  RETURN	  FROM	  DOWNSTREAM	  	  
BUT	  TENDS	  TO	  ZERO	  FOR	  HIGH	  U2	  



ENERGY	  GAIN:	  	  
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PuTng	  these	  two	  expressions	  together	  we	  get:	  
	  
	  
	  
	  
	  
	  
	  
Therefore,	  aWer	  expanding	  for	  U<<1:	  
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THE	  SLOPE	  OF	  THE	  DIFFERENTIAL	  SPECTRUM	  WILL	  BE	  	  
γ+1=(r+2)/(r-‐1)	  →	  2	  FOR	  r→4	  (STRONG	  SHOCK)	  



THE TRANSPORT EQUATION APPROACH 

( )tp,x,Q+
p
fp

dx
du+

x
fu

x
fD

x
=
t
f

∂

∂

∂

∂
−⎥
⎦

⎤
⎢
⎣

⎡
∂

∂

∂

∂

∂

∂

3
1

UP	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DOWN	  

U1            U2 

-∞            0-    0+             +∞ 
! 

D "f
"x

# 

$ 
% 

& 

' 
( 
2

) D "f
"x

# 

$ 
% 

& 

' 
( 
1

+1
3
u2 )u1( )p

df0 p( )
dp

+Q0 p( ) = 0

Integrating around the shock: 
 
 
 
 
Integrating from upstr. infinity to 0-: 
 
 
 
and requiring homogeneity downstream: 
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THE TRANSPORT EQUATION APPROACH 
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INTEGRATION	  OF	  THIS	  SIMPLE	  EQUATION	  GIVES:	  

1.   THE	   SPECTRUM	   OF	   ACCELERATED	   PARTICLES	   IS	   A	   POWER	   LAW	   EXTENDING	   TO	  
INFINITE	  MOMENTA	  

2.   THE	   SLOPE	   DEPENDS	   UNIQUELY	   ON	   THE	   COMPRESSION	   FACTOR	   AND	   IS	  
INDEPENDENT	  OF	  THE	  DIFFUSION	  PROPERTIES	  

3.   INJECTION	   IS	   TREATED	   AS	   A	   FREE	   PARAMETER	   WHICH	   DETERMINES	   THE	  
NORMALIZATION	  

DEFINE THE COMPRESSION FACTOR 
r=u1/u2à4 (strong shock) 
 
THE SLOPE OF THE SPECTRUM IS 

3u1

u1 − u2
=

3
1− 1/r

→ 4 if r→ 4

NOTICE THAT: N(p)dp = 4πp2f(p)dp→ N(p) ∝ p−2



TEST PARTICLE SPECTRUM 

Mach Number 



SOME IMPORTANT COMMENTS 

 THE STATIONARY PROBLEM DOES NOT ALLOW TO HAVE A MAX 
MOMENTUM! 

 THE NORMALIZATION IS ARBITRARY THEREFORE THERE IS NO 
CONTROL ON THE AMOUNT OF ENERGY IN CR 

 AND YET IT HAS BEEN OBTAINED IN THE TEST PARTICLE 
APPROXIMATION 

 THE SOLUTION DOES NOT DEPEND ON WHAT IS THE MECHANISM THAT 
CAUSES PARTICLES TO BOUNCE BACK AND FORTH 

 FOR STRONG SHOCKS THE SPECTRUM IS UNIVERSAL AND CLOSE TO E-2 

 IT HAS BEEN IMPLICITELY ASSUMED THAT WHATEVER SCATTERS THE 
PARTICLES IS AT REST (OR SLOW) IN THE FLUID FRAME 



Maximum Energy 
The maximum energy in an accelerator is determined by either the age of  
the accelerator compared with the acceleration time or the size of  the 
system compared with the diffusion length D(E)/u. The hardest condition 
is the one that dominates. 
 
Using the diffusion coefficient in the ISM derived from the B/C ratio: 
 
 
 
and the velocity of  a SNR shock as u=5000 km/s one sees that: 
 
 
 
 
Too long for any useful acceleration  NEED FOR ADDITIONAL TURBULENCE 

D(E) ≈ 3× 1028E1/3
GeV cm2/s

tacc ∼ D(E)/u2 ∼ 4× 103E1/3
GeV years

NOTE: IN APPENDIX 1 I DERIVE THE ACTUAL EXPRESSION FOR THE 
ACCELERATION TIME: 

tacc(p) = �t� =
3

u1 − u2
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+
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ELECTRONS IN ONE SLIDE 

PB 2010 



Energy losses and electrons 

For electrons, energy losses make acceleration even harder.  
 
The maximum energy of  electrons is determined by the condition: 
 
 
 
 
 
 
Where the losses are mainly due to synchrotron and inverse Compton 
Scattering. 

tacc ≤Min [Age, τloss]



WHY DO WE NEED MORE THAN THIS? 
NON LINEAR THEORY 

We want a theory of  particle acceleration that 
allows one to describe: 
 
1.  Dynamical reaction of  accelerated particles 

2.  The interaction between particles and magnetic fields 
(remember that Emax is not large enough!) 

3.  Dynamical reaction of  amplified fields 

4.  Physical understanding of  injection (self-regulation of  
the system) 

5. Escape of  particles: how do particles become Cosmic 

 Rays? 



DIFFUSIVE ACCELERATION AT COLLISIONLESS 
NEWTONIAN SHOCKS 

non linear theory	  
VELOCITY 
PROFILE 

1 2 0 

SUBSHOCK 

DENSITY OF ACCELERATED PARTICLES 

CR PRECURSOR 

MASS  
CONSERVATION 

MOMENTUM CONSERVATION 

ENERGY 
CONSERVATION 



Closing the system with waves and CR 

GAS PRESSURE AND 
WAVES 

ADVECTION, GROWTH AND  
DAMPING OF WAVES 

ONLY FOR ALFVEN WAVES!!! 
AMPLIFICATION OF B-FIELD AS DUE TO  
CR STREAMING INSTABILITY 



Formation of a precursor 
∂

∂x
[ρu] = 0→ ρ(x)u(x) = ρ0u0

VELOCITY 
PROFILE 

1 2 0 
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AND DIVIDING BY THE RAM PRESSURE AT UPSTREAM INFINITY: 
 
 
 
 
 
WHERE WE NEGLECTED TERMS OF ORDER 1/M2 
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DIFFUSIVE ACCELERATION AT COLLISIONLESS 
NEWTONIAN SHOCKS 

non linear theory: BASIC PREDICTIONS	  

VELOCITY 
PROFILE 

1 2 0 

COMPRESSION FACTOR BECOMES 
FUNCTION OF ENERGY 
 
SPECTRA ARE NOT PERFECT  
POWER LAWS (CONCAVE) 
 
GAS BEHIND THE SHOCK IS  
COOLER FOR EFFICIENT SHOCK 
ACCELERATION 
 
SYSTEM SELF REGULATED 
 
EFFICIENT GROWTH OF B-FIELD 
IF ACCELERATION EFFICIENT 



Basics of  CR streaming instability 

     + + 
  + + + + +  
+ + + + ++ 
++++++++ 
++++++++ 
++++++++ 
+ + + ++ 
++ ++ 

SHOCK 
FRONT 

JCR=nCRVs q 

THE UPSTREAM PLASMA REACTS TO 
THE UPCOMING CR CURRENT BY  
CREATING A RETURN CURRENT TO 
COMPENSATE THE POSITIVE CR CHARGE 
 
THE SMALL INDUCED PERTURBATIONS 
ARE UNSTABLE (ACHTERBERG 1983, ZWEIBEL 
1978, BELL 1978, BELL 2004, AMATO & PB 2009)  

CR MOVE WITH THE SHOCK SPEED (>> VA). THIS UNSTABLE SITUATION  
LEADS THE PLASMA TO REACT IN ORDER TO SLOW DOWN CR TO <VA 
BY SCATTERING PARTICLES IN THE PERP DIRECTION (B-FIELD GROWTH) 
 

B0 



MagneAc	  Field	  AmplificaAon	  
CR streaming with the shock leads to growth of waves. The general idea is 
simple to explain: 
 
 
 
 
and assuming equilibrium: 
 
 
 
 
And for parameters typical of SNR shocks: 
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MAGNETIC FIELD AMPLIFICATION 
OR THE QUEST OF WHETHER THE CHICKEN OR THE EGG CAME FIRST 

	  
SMALL PERTURBATIONS IN THE LOCAL B-FIELD CAN BE 

AMPLIFIED BY THE SUPER-ALFVENIC STREAMING OF THE 
ACCELERATED PARTICLES 

Particles are accelerated because there is 
High magnetic field in the acceleration region 

 
 

High magnetic field is present because  particles 
are accelerated efficiently 

Without this non-linear process, no acceleration of  CR 
to High energies (and especially not to the knee!) 

BUT… 



…MAGNETIC FIELD CAN BE AMPLIFIED BY  
 
1.   RESONANT STREAMING (Bell 78, Achterberg 83, Zweibel 78) 

 Fast generation, fast scattering … saturation? 

2.  NON RESONANT STREAMING (Bell 04, Amato & PB 09) 

 Probably more efficient generation rate but inefficient scattering 

3.  SHOCK CORRUGATION (DOWNSTREAM) Giacalone & Jokipii 07 
 Not CR induced! 
 It happens downstream only, it does not help with particle acceleration 
 unless perpendicular shock 

4.  VORTICITY IN THE PRECURSOR (PB, Matthaeus, et al. 12) 
 
Potentially very interesting, power on large scales 

5.  FIREHOSE INSTABILITY (Shapiro et al. 98) 
 

 Potentially very interesting, power on large scales 



GROWING MODES in CR STREAMING 
INSTABILITY 

Amato & PB 2009, Bell 2004

1000 years 

NON RESONANT MODES GROW FASTER 
BUT THEY DO NOT SCATTER PARTICLES 
EFFECTIVELY UNLESS FAST INVERSE 
CASCADE   



SATURATION OF GROWTH 
Extremely uncertain. It depends on: 
 
a)   Damping (type of  waves?) 

b)   Backreaction of  fields on the CR current 
 
c)   Coupling between large and small spatial scales 
 
A naïve extrapolation of QLT would lead to: 

       in the resonant case, upstream 
       (or possibly δB/B~1 because 
       resonance gets lost) 
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Estimated analytically from 
Saturation condition of non resonant 
Modes (Bell 2004) 



X-ray rims and B-field amplification 
TYPICAL THICKNESS OF FILAMENTS: ~ 10-2 pc 

The synchrotron limited thickness is: 

! 

B "100 µGauss

In some cases the strong fields are confirmed 
by time variability of  X-rays 
Uchiyama & Aharonian, 2007 





SPECTRA 

THE SPECTRA OF ACCELERATED PARTICLES ARE IN GENERAL  
CONCAVE AND FLATTER THAN E-2 AT HIGH ENERGY 
 
THE MAXIMUM ENERGY WITH B-FIELD AMPLIFICATION REACHS  
UP TO ~1015 eV FOR PROTONS (Z TIMES HIGHER FOR NUCLEI) 
 
THESE SPECTRA SHOULD REFLECT IN THE GAMMA RAY SPECTRA 
(IF DUE TO PP SCATTERING) AND OF NEUTRINOS 
 
 
 

BUT THE OBSERVED SPECTRA OF GAMMAS  
ARE TYPICALLY ~ E-2.3  
 
CLEARLY  INCOMPATIBLE WITH LEPTONIC MODELS! BUT ALSO NOT 
COMPATIBLE WITH THE SIMPLEST PREDICTION OF NLDSA 



TROUBLE WITH SLOPES ? 

Caprioli 2011 

VERY SURPRISING TO SEE THAT THE 
REQUIRED ACCELERATION EFFIC. ARE 
HIGH BUT THE SPECTRA ARE STEEP 



THE EFFECT OF THE VELOCITY OF WAVES 

One should remember that the compression factor that counts in shock 
acceleration is not that of fluid velocity, but that of the scattering centers velocity 
 
 
 
 
 
When the magnetic field is amplified the Alfven speed is not well defined and one 
may argue that it should be calculated in the amplified field (it depends on helicity!):  

THIS EFFECT LEADS TO STEEPER SPECTRA WHEN  
ACCELERATION IS EFFICIENT (BUT VERY MODEL  
DEPENDENT) 



Caprioli 2011 



HOW DO ACCELERATED PARTICLES BECOME CRs?  
THE PROBLEM OF ESCAPE 

SNR	  
Shock	   Free	  Escape	  	  

Boundary	  

Advected	  
CRs	  

The escape flux can be calculated  
using the transport equation IF 
one assumes a free escape  
boundary surface (DURING ST PHASE) 
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"esc(E, x) = D(E) #f (E, x)
#x

$ 
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x=x fe

Caprioli	  et	  al.	  2010	  
Caprioli	  et	  al.	  2009	  



CR ESCAPE AND CLOUDS 

TWO SCENARIOS: 
 

SNR SHOCK ENTERS THE MC 
Collisionless shock only involves the small fraction of  
Ions (low density) 
 
Ion-neutral density kills waveslow Emax 
 
MC IS ILLUMINATED BY CR FROM SNR 
The mc only acts as a target for pp 
Gamma ray flux depends on  
-Age of  SNR 
-Diffusion coefficient around the SNR 
-Escape physics 



The case of  RX J1713 
  

Morlino, Amato & PB 2009 
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Tycho Supernova Remnant – 1572 
SN Type Ia 
Distance ~3 kpc 



The case of  Tycho 
Morlino&Caprioli	  2011	  



The case of Tycho 
Morlino&Caprioli	  2011	  

STEEP SPECTRUM  
BASICALLY IMPOSSIBLE TO 
EXPLAIN WITH LEPTONS 



MODERN ASPECTS OF ACCELERATION 
AT A COLLISIONLESS SHOCK 

SHOCK	  VELOCITY	  
NEUTRALS	  
AND	  IONS	  

+	   +	  
Hot 
ion 

Cold neutral 

hot neutral 

Cold 
ion 

CHARGE EXCHANGE à BROAD  
BALMER LINE  (NEUTRALS  
THAT MADE CHARGE  
EXCHANGE) REFLECTING  
THE TEMPERATURE OF IONS… 
 
BUT THE LATTER AFFECTED BY EFFICIENT CR ACCELERATION 

! 

"v

PB+, 2011 



BROAD BALMER LINES NARROWER THAN FOR 
UNMODIFIED SHOCKS 

Helder	  et	  al.	  2009	  

INFERRED	  EFFICIENCY	  of	  CR	  ACCELERATION	  50-‐60%	  !!!	  (BUT	  model	  
dependent)	  

! 

Wbroad = 8 ln 2 kT2

m
" 1.02 vsh



NARROW BALMER LINES BROADER THAN FOR 
UNMODIFIED SHOCKS	  

Sollerman	  et	  al.	  2003	  

! 

Wbroad = 8 ln 2 kT0

m
" 21 km/s T0

104K
# 

$ 
% 

& 

' 
( 

1/2

NEUTRALS	  

IONS	  

! 

"v

CHARGE EXCHANGE OCCURS 
NOW IN THE CR INDUCED 
PRECURSOR 
 
 
 
NARROW BALMER LINE BROADER 
THAN FOR AN UNMODIFIED SHOCK 



APPENDIX 1 
Hydrodynamics and Shocks 



There are many instances of  astrophysical systems that result in explosive 
phenomena in which large amounts of  mass and energy are released in the 
surrounding medium (interstellar medium or intergalactic medium) at high 
speed. The ejected material behaves as a fluid, though often the importance 
of  magnetic fields cannot be neglected. 
 
Here I will discuss the basic laws that govern the dynamics of  such a fluid, 
under ideal conditions in which the fluid evolves adiabatically and the effects 
of  thermal conductivity can be neglected.  
 
I will show how the laws that govern the motion of  such a fluid lead to conclude 
that in some conditions shock waves can develop in the fluid. 
 
These concepts are of  particular importance in supernova explosions, which  
Are likely to play an important role for particle acceleration in the universe. 
 
I will restrict the attention to fluid that move subrelativistically, so that only 
Newtonian dynamics applies.  
 
I will also comment upon the collisionless nature of  the shock waves that  
develop in astrophysics (with some exceptions). 



Conservation of  mass 
Let us consider a fixed infinitesimal volume dV where the matter density is 
r. The mass in the volume rdV remains constant unless mass is allowed to 
Flow in and out of  the volume dV. The total mass is 
 
 
 
and changes in time because of  the flux of  mass per unit time and volume  
across the surface dA that surrounds dV:  
 
 
 
 
 
It follows that: 

�
ρdV

Gauss	  Theorem	  

∂ρ

∂t
+∇ · (ρ�v) = 0

− d

dt

�
ρdV =

�
ρ�v · d �A ≡

�
∇ · (ρ�v)dV



Conservation of  momentum 
An element of  surface suffers a pressure p and a force over the volume: 
 
 
 
The force exerted on the fluid element of  mass rdV is: 
 
 
 
Where D/Dt is the convective derivative. Let us consider a fluid element that  
is at x at time t and moves with velocity v(x,t). At time t+dt the fluid element is 
located at x+vdt, therefore the acceleration is  
 
 
 
It follows that: 

−
�

d �A
pd �A = −

�

dV
∇pdV

ρdV
D�v

Dt
= −∇pdV → ρ

D�v

Dt
= −∇p

∂�v

∂t
+ �v ·∇�v = −∇p

ρ

D�v

Dt
=

∂�v

∂t
+ �v ·∇�v



Conservation of  energy 
In the assumption of  adiabatic evolution of  the fluid, the entropy per unit mass  
s is conserved:  
 
 
 
and using conservation of  mass, one immediately gets: 
 
 
 
Introducing the specific enthalpy: w=e+p/r, one can write: 
 
 
 
 
 
 
Which leads to: 

∂s

∂t
+ �v ·∇s = 0

∂(ρs)
∂t

+∇ · (ρs�v) = 0

dw = Tds +
dp

ρ
=

dp

ρ

AdiabaScds=0	  

∂�v

∂t
+ �v ·∇�v = −∇p

ρ
= −∇

�
e +

p

ρ

�



For a polytropic gas with adiabatic index g one has that the energy density per 
Unit volume is u=p/(g-1) therefore: 
 
 
 
So that 
 
 
 
And the previous equation becomes: 
 
 
 
 
In the one dimensional stationary case one has 
 
 
 
And using the eqn for conservation of  mass one immediately gets: 

u = ρe =
p

γ − 1
→ e =

1
γ − 1

p

ρ

w = e +
p

ρ
=

γ

γ − 1
p

ρ

∂�v

∂t
+ �v ·∇�v = − γ

γ − 1
∇

�
p

ρ

�

v
∂v

∂x
+

γ

γ − 1
∂

∂x

�
p

ρ

�

∂

∂x

�
1
2
ρv3 +

γ

γ − 1
vp

�
= 0→ 1

2
ρv3 +

γ

γ − 1
vp = Constant



APPENDIX 2: Acceleration Time 
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Let us move to the Laplace transform: 
 
 
 
so that the transport equation becomes: 
 
 
 
 
Integrating this equation between x=0- and x=0+ one gets: 

g(s, x, p) =
� ∞

0
dte−stf

0 =
�
D

∂g

∂x

�

2

−
�
D
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UPSTREAM 

Where we have assumed that: 

Q(x, p) = Q0(p)δ(x) and Q0(p) = Aδ(p− pinj)

and assuming that the diffusion coefficient is independent upon location x  
the solution has the form:  

g1(s, p, x) = g0(s, p) exp [β1x] x < 0

sg1 + u1
∂g1

∂x
=

∂

∂x

�
D1

∂g1

∂x

�
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2D1

�
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1
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4D1s

u2
1
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g0 = σ1g0



DOWNSTREAM sg2 + u2
∂g2

∂x
=

∂

∂x

�
D2

∂g2

∂x

�

Proceeding as in the previous case: 
 
 
 
 
 
 
 
 
 
 
 
 
Notice that in the long time limit, namely s0 one gets the well known result: 

g2(s, p, x) = g0(s, p) exp [β2x] x > 0
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Notice that one can easily write: 
 
 
 
 
 
 
 
In this way A1 has the same property as s1 namely they both vanish in the  
long time limit s0. 
 
Substituting in the equation at the shock: 
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The homogeneous equation associated with this is: 
 
 
 
 
Which has the solution: 
 
 
 
 
The general solution of  the equation has the form: 
therefore the equation for l must be:   
 
 
 
which is readily solved: 
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It follows that the solution of  our equation is: 
 
 
 
 
and carrying out the Laplace inverse transform: 
 
 
 
 
Note that the pole in the equation for g0 is at s=0 and it is obvious that in the  
limit of  large times one has: 
 
 
 
 
Therefore one can write: 
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Let us introduce the function: 
 
 
 
 
 
 
 
 
Taking the Laplace Transform of  this new function one has: 
 
 
 
 
This means that the solution of  our problem is the spectrum K(p) and infinite 
time times a probability function that at time t one can have a particle with 
momentum p. Indeed one has that: 
 
 
 
 
Namely the function is correctly normalized.  
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One can now use the obvious property that: 
 
 
 
 
From which it follows that the average time to get particles with momentum p 
is: 
 
 
 
 
 
It follows that: 
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